
Industry Paper: Surrogate Models for Testing Analog Designs
under Limited Budget – a Bandgap Case Study

Roderick Bloem
Graz University of Technology

Austria

Alberto Larrauri
Graz University of Technology

Austria

Roland Lengfeldner
Infineon Technologies AG

Austria

Cristinel Mateis
AIT Austrian Institute of Technology

Austria

Dejan Ničković
AIT Austrian Institute of Technology

Austria

Björn Ziegler
Infineon Technologies AG

Austria

ABSTRACT
Testing analog integrated circuit (IC) designs is notoriously hard.
Simulating tens of milliseconds from an accurate transistor level
model of a complex analog design can take up to two weeks of
computation. Therefore, the number of tests that can be executed
during the late development stage of an analog IC can be very
limited. We leverage the recent advancements in machine learning
(ML) and propose two techniques, artificial neural networks (ANN)
and Gaussian processes, to learn a surrogate model from an existing
test suite. We then explore the surrogate model with Bayesian
optimization to guide the generation of additional tests. We use
an industrial bandgap case study to evaluate the two approaches
and demonstrate the virtue of Bayesian optimization in efficiently
generating complementary tests with constrained effort.

CCS CONCEPTS
• Hardware→ Best practices for EDA; Simulation and emu-
lation; Safety critical systems.
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1 INTRODUCTION
Analog integrated circuit (IC) verification plays an important role
in the development of modern safety critical systems. It is widely
accepted that for complex mixed-signal IC products, verification
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accounts for 60%–70% of the total project development effort. Ana-
log designs exhibit complex dynamics and hence, simulation-based
testing remains the preferred verification method used in practice.

Simulation-based testing of analog IC is a challenging activity.
First, the verification workflow involves tasks, such as test input
generation, which are typically handled manually and require con-
siderable human expertise. Second, simulating transistor-level ana-
log IC designs can require tremendous computation effort – ten
milliseconds of circuit’s real time can result in hours, days or even
weeks of simulation time, depending on the design’s complexity
and its level of accuracy. Design teams are working under pressure
to deliver their product on time and have limited budget to spend on
verification. Given the above challenges, it is imperative to smartly
devise test inputs that will minimize the overall simulation effort,
while maximizing the chance of covering all critical scenarios.

In this paper, we leverage recent advances in machine learning to
improve the process of testing analog ICs under constrained budget.
We explore two main questions: (I) How to use machine learning to
infer from (possibly already available) simulation traces a surrogate
model of the design, and (II) how to generate test inputs guided
by machine learning methods that maximize the accuracy of the
surrogate model with the minimum number of simulations.

We investigate three different methods to respond to these two
questions. First, we randomly generate test inputs and use an ar-
tificial neural network (ANN) to create a surrogate model of the
design. This is our baseline ML approach that can be effectively
used in the presence of an existing test bench and simulation traces.
We then investigate Gaussian processes (GPs) with maximum en-
tropy sampling (MES) to learn the accurate surrogate model with a
smaller number of test inputs and design simulations. In both cases,
we then employ the particle swarm optimization (PSO) algorithm to
find critical test scenarios in the design. We finally explore GPs and
Bayesian Optimization (BO) to find efficiently critical test scenarios
without attempting to achieve a necessarily good overall accuracy
of the surrogate model.

The proposed methodology and its evaluation are driven by an
industrial bandgap case study. A bandgap for accurate voltage and
current reference is a versatile component used in many complex
mixed-signal systems and hence a good representative of a typical
analog IC. The evaluation highlights the strengths of the proposed
methods and demonstrates the effectiveness of applying machine
learning for testing analog ICs via learning surrogate models.

Related work. Deshmukh et al. [3] apply BO to CPS testing in order
to minimize the number of required simulations when searching
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for the global minimum of a function expressed as the robustness
of a signal w.r.t. a given logical specification. Coupled with dimen-
sionality reduction techniques, their approach proves to scale with
the increase of the input space dimensionality.

Zhang et al. [10] propose an approximated GP-based method
to infer a confidence measure for estimating the probability that
an STL specification is satisfied by a black-box system. The ap-
proach starts from the test cases used by an arbitrary falsification
framework which fails to find a counterexample not fulfilling the
specification. These test cases are used to train a GP regression
model which for a given input signal of the black-box system pre-
dicts the robustness of the STL formula w.r.t. the output signal of
the black-box system. The surrogate GP model is used to construct
the objective function of an optimization problem which aims at
finding the local minima w.r.t. the 95% lower confidence bound of
the robustness predictions around the best 𝑛 candidates selected
from 𝑁 data points sampled from the black-box input space, where
𝑛 ≪ 𝑁 . The 𝑛 local minimum data points are used to construct a
multivariate Gaussian distribution which, in turn, is used to infer
the target confidence measure, calculated as the probability that
the robustness values of all 𝑛 data points are positive.

2 INDUSTRIAL CASE STUDY
The case study consists of an analog bandgap for accurate voltage
and current reference provided by Infineon. The goal is to identify
an appropriate circuit design for the bandgap which ensures both (i)
the output voltage remains close to 1.132𝑉 , within the specification
interval [ 1.099𝑉 , 1.165𝑉 ], and (ii) the output current remains close
to 20𝜇𝐴 with a maximum tolerance of ±1𝜇𝐴. In addition to design
parameters defined by Infineon’s engineers, the bandgap outputs
are sensitive to some input parameters which reflect its operation
conditions. Among these, we selected the most important param-
eters according to domain knowledge. These are the parameters
which induce a non-negligible variation of the bandgap outputs.
Table 1 shows the selected influencing parameters; these are mainly
supply voltages of the bandgap and the operation temperature.

Since implementing circuit designs is costly, it is not feasible to
produce a testing device for each design until a particular design
choice is physically proven to fulfil the specification. To overcome
this issue, Infineon uses a functionally-performant HSPICE com-
patible simulator capable of reproducing the physical behavior of
a given circuit design with high fidelity. Thus, in order to find an
appropriate design fulfilling the specification, validation tests can
be performed on the simulator. More specifically, the simulator is
first configured with a given circuit design. Subsequently, tests cor-
responding to different valuations of the influencing parameters are
run on the configured simulator. The output voltages and currents

Name Definition min typical max Comments
VDDPD global supply 1.08V 1.28V 1.41V

VDDA_EVR local supply 2.20V 2.35V 2.80V

VDDA_HPBG local supply 2.20V 2.35V 2.80V set equal to
VDDA_EVR

VREF local supply 0.579V 0.60V 0.621V set to 0.6V
VSS local supply 0V set to 0V
Temp temperature -40°C 40°C +175°C

Table 1:

resulting from these simulations are checked against the specifica-
tion. If the specification check passes for all valuations from the test
suite, the current circuit design is selected for implementation and
testing on a physical device before mass production. Otherwise, the
engineers make a different circuit design choice and reconfigure
the simulator with the new circuit design. Finally, they start a new
iterative validation process with the reconfigured simulator and the
same test suite. Although production-related costs can be avoided
with this approach, such a simulator is computationally very in-
tensive and the number of simulations which can be performed in
reasonable time remains limited.

Infineon’s simulator can be accessed in either batch mode or
interactive mode. In batch mode, multiple tests can be queued
into the simulator from the beginning. In interactive mode, only
individual tests can be given to the simulator, each after all previous
simulations have been completed. The average execution time in
batch mode of one simulation is approximately one minute, while in
interactive mode it is approximately two minutes. This increase is
mainly due to network latency and fixed time costs per simulation
launch.

3 METHODOLOGY
Since the methodology is similar for the verification of both voltage
and current specifications, in the rest of this paper we will only
focus on the output voltage.

We consider the configured simulator of the bandgap as a black-
box function 𝐹𝑆 , which maps each valuation of the parameters
(𝑉𝐷𝐷𝑃𝐷,𝑉𝐷𝐷𝐴_𝐸𝑉𝑅,𝑇𝑒𝑚𝑝) to an output voltage. Thus, 𝐹𝑆 : 𝐷 →
R, where 𝐷 = [1.08, 1.41] × [2.2, 2.8] × [−40.0, 175.0]. Our goal
is to determine whether the output voltage remains withing the
specification interval, that is, 𝐹𝑆 (𝑥) ∈ [1.099, 1.165] for all 𝑥 ∈
𝐷 . Evaluating 𝐹𝑆 at a point 𝑥 amounts to running an expensive
simulation of the bandgap. Hence, we assume that sampling 𝐹𝑆 is
costly, and only a limited budget of output queries is available.

We apply three different testing methods to address the above
specification verification problem and compare their effectiveness.
In the first two, we learn a cheap-to-evaluate surrogate model 𝑓
of 𝐹𝑆 from examples of input/output pairs. In the first method this
is done by training an artificial neural network (ANN), and in the
second by fitting a Gaussian process (GP) using maximum entropy
sampling (MES). We subsequently find estimates of the min/max
values of 𝑓 by employing an optimization solver with 𝑓 as objective
function. We conclude that the specification is fulfilled if those esti-
mates fall within the specification interval. In the third approach
we search for 𝐹𝑆 ’s extreme values directly via Bayesian optimiza-
tion (BO), a black-box optimization method. As for the baseline,
we consider random testing. Here, we select a fixed number of
independent uniform random locations on 𝐷 and conclude that 𝐹𝑆
is correct if the outputs of all corresponding simulations fall into
the specification interval.

In order to evaluate the different methods efficiently, we generate
a large initial dataset. We pick 9 values for 𝑉𝐷𝐷𝑃𝐷, 9 for 𝑉𝐷𝐷𝐴_𝐸𝑉𝑅

and 12 for𝑇𝑒𝑚𝑝, all (almost) equidistant in their domains and includ-
ing the interval margins. All combinations of these values result in
972 points with good coverage of 𝐷 . These are fed into simulator
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in batch mode to obtain a set 𝐵 of 972 samples. During each experi-
ment, we randomly select 20% of 𝐵’s samples to form a test set 𝑇 ,
used for evaluation purposes. The remaining 80% of 𝐵 is left to be
used by the corresponding testing method as required.

We dedicate the rest of the section to detailing the testing meth-
ods under consideration. For this, we introduce the models of inter-
est: artificial neural networks and Gaussian processes.

Artificial Neural Networks. ANNs [4] are machine learning mod-
els inspired by the networks of biological neurons. ANN are com-
posed of artificial neurons. Formally, a neuron is a real-valued func-
tion 𝜙 (𝑥1, . . . , 𝑥𝑛) with several real inputs. Each input connection 𝑖 ,
𝑖 = 1, . . . , 𝑛, is associated with a weight𝑤𝑖 which adjusts as learning
proceeds. The neuron 𝜙 consists of the composition of two func-
tions: (1) the weighted sum of its inputs, i.e. 𝑧 = 𝑤1𝑥1 + . . . +𝑤𝑛𝑥𝑛 ,
and (2) the activation function 𝑔. Hence, 𝜙 = 𝑔 ◦ 𝑧. Neurons are
typically aggregated into layers. An ANN is just a collection of
layers connected together. The first layer of an ANN, which is the
layer receiving external data, is called the input layer. The layer
which produces the final result of the ANN is called the output layer.
The intermediate layers between the input and output layers are
called hidden layers. Training an ANN is the procedure of tuning
the input weights of its neurons, i.e. the model parameters, until
the ANN makes good predictions on unseen examples. Training is
typically performed via the backpropagation algorithm introduced
in [9].

We use an ANN architecture with three hidden layers, each con-
sisting of 100 neurons with the relu activation function. The input
layer consists of three neurons corresponding to the coordinates of
𝐷 , and the output layer consists of a single neuron with the linear
activation function. We use TensorFlow 2 [1] with Python 3 to train
the ANN with the ADAM optimizer [6] and a learning rate of 0.001
for 1000 epochs.

Gaussian Processes. Let𝑚 : 𝐷 → R and let 𝑘 : 𝐷2 → R be a co-
variance function (see [8]). A Gaussian process (GP) 𝑓 ∼ GP(𝑚,𝑘)
is a collection of random variables (𝑓 (𝑥))𝑥 ∈𝐷 satisfying that (1) for
any finite set 𝑆 ⊂ 𝐷 , the variables (𝑓 (𝑥))𝑥 ∈𝑆 follow a multivari-
ate normal distribution, (2) E[𝑓 (𝑥)] = 𝑚(𝑥) for all 𝑥 ∈ 𝐷 , and (3)
𝐶𝑜𝑣 (𝑓 (𝑥), 𝑓 (𝑦)) = 𝑘 (𝑥,𝑦) for all 𝑥,𝑦 ∈ 𝐷 . GPs can be used in regres-
sion tasks to model unknown functions. The mean𝑚(𝑥) gives a pre-
dicted value for 𝑓 (𝑥), while the standard deviation 𝜎 (𝑥) =

√︁
𝑘 (𝑥, 𝑥)

quantifies the uncertainty in that prediction. Importantly, given
some set of observations 𝑓 (𝑥1) = 𝑦1, . . . , 𝑓 (𝑥𝑘 ) = 𝑦𝑘 , the random
process can be “updated” via conditioning, using Bayes’ rule. This
results in a posterior stochastic process 𝑓 ′ which is also distributed
like a GP with new mean𝑚′ and covariance 𝑘 ′. In our experiments,
we use GPs as statistical models for Infineon’s voltage regulator 𝐹𝑆 .
For this, we employ the GP implementation available in Tensorflow
2.

The training of a GP 𝑓 ∼ GP(𝑚,𝑘) refers to the task of selecting
mean𝑚 and covariance function𝑘 , as well as their parameters based
on a given set of observations, called the training set. In our experi-
ments, we normalize the input and output space around the training
set, and pick the zero mean function𝑚 ≡ 0. For 𝑘 , we employ the
square exponential covariance function with differently weighted
dimensions, given by 𝑘 (𝑥, 𝑥 ′) = 𝜎2

𝑓
exp

(
−1/2∥Λ(𝑥 − 𝑥 ′)∥2

)
, where

Λ is a diagonal matrix with elements 𝜆1, 𝜆2, 𝜆3. In order to choose
the hyperparameters 𝜎𝑓 , 𝜆1, 𝜆2, 𝜆3 we follow the “log likelihood
maximization” procedure described in [8]. We use the gradient-
based optimizer ADAM for this task.

Now we are in conditions to describe the different testing meth-
ods employed during the experimental section.

3.1 ANN-Based Testing
Given a budget 𝑛 of simulations, the algorithm selects 𝑛 random
samples from the set 𝐵 to build the training set. This set is used to
learn an ANN surrogate model 𝑓 of the bandgap simulator 𝐹𝑆 . Af-
terwards, we employ particle swarm optimization [5] (PSO) to find
𝑓 ’s extreme values, as implemented in PySwarm library1. Finally,
we compare those values against the specification.

3.2 Maximum Entropy Sampling
We use an adaptive method to fit a GP 𝑓 ∼ GP(𝑚,𝑘) to 𝐹𝑆 . At each
round 𝑡 we call 𝑂𝑡 ⊆ 𝐷 × R to the set of samples observed by the
algorithm so far. We denote by𝑚𝑡 : 𝐷 → R and 𝜎𝑡 : 𝐷 → R the
mean and the standard deviation of the posterior GP 𝑓𝑡 , obtained
by conditioning 𝑓 to the observations 𝑂𝑡 . The first set 𝑂0 consists
of 25 samples chosen at random from the batch simulations 𝐵.
Hyperparameters of the GP are trained using those samples. During
each round 𝑡 , the algorithm selects a new location 𝑥𝑡 ∈ 𝐷 to run
an interactive simulation and add the corresponding sample to 𝑂𝑡 ,
yielding 𝑂𝑡+1. The point 𝑥𝑡 is selected by maximizing 𝜎𝑡 (𝑥) via
PSO. This follows an approach from Bayesian experimental design
where sample locations are chosen to maximize so-called entropy of
amodel [7].When the budget𝑛 of samples is exhausted, i.e. |𝑂𝑡 | = 𝑛,
the surrogate model 𝑓𝑡 is used to estimate 𝐹𝑆 ’s extreme values. This
is done by running PSO on𝑚𝑡 , as with the ANN algorithm. Finally,
the resulting estimates are checked against the specification.

3.3 Bayesian Optimization
Bayesian optimization [2] is amodel-based technique for finding the
global maximum of unknown objective functions. The algorithm
is largely the same as MES, described above. The main difference
lies in how the location 𝑥𝑡 for the next interactive simulation is
chosen at each round. During MES, 𝑥𝑡 was a “maximally informa-
tive location”. Now 𝑥𝑡 is picked as a location where 𝐹𝑆 is likely to
produce a high value. This is done by maximizing an upper con-
fidence bound (UCB) acquisition function 𝑔𝑡 : 𝐷 → R, given by
𝑔𝑡 (𝑥) =𝑚𝑡 (𝑥) + 𝛽

1/2
𝑡 𝜎𝑡 (𝑥), where 𝛽𝑡 = 4 ln(𝑡 + 1) + 10. When the

simulation budget runs out, the maximum sample value so far is
used as an estimate for the maximum of 𝐹𝑆 . To estimate the mini-
mum of 𝐹𝑆 , the optimization procedure is run on −𝐹𝑆 instead. As
in MES, the GP 𝑓𝑡 could be used as a surrogate model of 𝐹𝑆 , but 𝑓𝑡
is only expected to be accurate around 𝐹𝑆 ’s high values.

3.4 Empirical min/max values
We consider random testing as a baseline. Given a budget 𝑛, the
algorithm runs 𝑛 simulations at independent uniformly random
data points in 𝐷 . In this method, we use the min/max values among

1https://pythonhosted.org/pyswarm/

https://pythonhosted.org/pyswarm/
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the 𝑛 observed output voltage values as estimates for 𝐹𝑆 ’s extreme
values. We call these the empirical min/max values, respectively.

4 EXPERIMENTAL RESULTS
In this section, we detail the results of our experiments, related to
the three methods ANN, BO, and MES. All experiments were run
ten times and all colored regions in the graphs indicate the 95%
confidence interval for the corresponding quantities. We address
two questions: (1) How does the precision of the surrogate models
obtained through each of the methods evolve with the number of
samples, and (2) how do maxima/minima predicted according to
the different methods vary with the number of samples?
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Figure 1: Learning curves comparison for surrogate model
performances under maximum budget of 100 samples.

Figure1 relates to question (1), and plots how the test error of
the different surrogate models evolve with the number of samples.
It shows two versions of BO: one where the bandgap’s value is
being maximized, and other where it is minimized. The test error
of a surrogate model 𝑓 : 𝐷 → R is computed by taking the root
mean square error (RMSE) on the test set 𝑇 , defined as

√
𝑚, where

𝑚 =
∑

(𝑥,𝑦) ∈𝑇 (𝑓 (𝑥) − 𝑦)2/|𝑇 |.
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Figure 2: Learning curves comparison for the max search
under maximum budget of 100 samples for all models.

As expected, MES and both versions of BO yield similarly precise
models just after training on the initial set 𝑂0 containing 25 sam-
ples. The initial training in these algorithms is performed the same
way, so differences here are due to randomness in the experiments.
Afterwards, the precision of the BO models plateaus in the range of

4·10−5 - 6·10−5 Volts of RMSE. In contrast, MES improves quickly in
the beginning and stabilizes around 2 ·10−5 Volts of RMSE at 80 sam-
ples. The ANN model starts off worse than the others, but catches
up to BO within the first 100 samples. If a greater budget is allowed,
the ANN model plateaus around 2 · 10−5 Volts at 350 samples. Here,
the MES approach seems clearly beneficial, even considering the
fact that interactive simulations are twice more expensive than
batch simulations. In any case, the RMSE achieved by all methods
is orders of magnitude below the size of the specification interval
for the bandgap, [1.099𝑉 , 1.165𝑉 ].
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Figure 3: Learning curves comparison for the min search
under maximum budget of 100 samples for all models.

Figures 2 and 3 address question (2). We consider four different
methods now: ANN, BO, MES - as before- , and random sampling
(RS). Figure 2 depicts how the predicted maxima given by the differ-
ent methods evolve, and Figure 3 shows the minima. All ANN, BO
and MES perform significantly better than random sampling. As
shown in the graphs, BO achieves the most consistent results, both
during the search of the maximum and that of the minimum. This
is evidenced by the fact that BO’s predictions exhibit the smallest
standard error from the start. Those predictions seem to stabilize
around 1.13695𝑉 at 50 samples, and around 1.1352𝑉 at 30 samples
during the maximization and minimization tasks, respectively. The
ANN and MES algorithms also stabilize quickly, in the range of 60
samples, achieving similar values to the ones obtained with BO,
although the estimates given by ANN andMES appear to be slightly
more conservative as the number of samples increases. The values
obtained by all methods fall well within the specification interval
of the bandgap, indicating high design robustness.

5 CONCLUSION
In this work we addressed the task of specification verification of a
system under the constraint that the number of tests which can be
performed on the system is limited. We described three different
techniques and used an analog bandgap for accurate voltage and
current reference as industrial case study to show that Bayesian
optimization achieves the best results.
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